PRELIMINARY DRAFT

Syntax

Terms and types. Note that we allow types to be optional in certain positions
(currently function arguments and return types, and on variable declarations).
Implicitly these are either inferred or filled in with dynamic.

There are explicit terms for dynamic calls and loads, and for dynamic type
checks.

Fields can only be read or set within a method via a reference to this, so no
dynamic set operation is required (essentially dynamic set becomes a dynamic
call to a setter). This just simplifies the presentation a bit. Methods may
be externally loaded from the object (either to call them, or to pass them as
closurized functions).

Type identifiers = C,G,T,S,...

Arrow kind (k) n= 4, —

Types 7,0 2= T | dynamic | Object | Null | Type | num
| bool | 7 B0 | C<7>

Optional type ([7]) == _| 7

Term identifiers = a,b,x,y,m,n,...

Primops (¢) n= 4, —]

Expressions e n= x| i] tt | ff | null | this

| (z:[7]):[0] = e | newC<7>()

| op(€) | e(€) | dcall(e, ®)

| eem | dload(e,m) | this.x

| x=e | thiszx =e

| throw | eas 7 | eis 7 | check(e,T)

Declaration (vd) = varz:[r] = e | f(z:1):T=5

Statements (s) = wd | e | if (e) then s; else s | returne | s;s
Class decl (ed) = class C<T > extends G< 9 > {ﬁ}

Toplevel decl (td) == wvd | cd

Program (P) = let fd in s

Type contexts map type variables to their bounds.

Class signatures describe the methods and fields in an object, along with the
super class of the class. There are no static methods or fields.

The class hierararchy records the classes with their signatures.

The term context maps term variables to their types. I also abuse notation
and allow for the attachment of an optional type to term contexts as follows:
I, refers to a term context within the body of a method whose class type is o.

Type context (A) = e | AT<:T

Class element (ce) w= varz:7 | fun f:7

Class signature (Sig) == class C<T> extends G<S > (et}
Class hierarchy (®) == €| ®,C : Sig

Term context (I") w= e | e : 7

Subtyping

Variant Subtyping

We include a special kind of covariant function space to model certain dart
idioms. An arrow type decorated with a positive variance annotation (4) treats
dynamic in its argument list covariantly: or equivalently, it treats dynamic
as bottom. This variant subtyping relation captures this special treatment of
dynamic.

®, A+ dynamic <:* 1

&, Al o<:7 0 # dynamic

AR o<t T

O AF o< T

OAF o<TT

Invariant Subtyping

Regular subtyping is defined in a fairly standard way, except that generics are
uniformly covariant, and that function argument types fall into the variant
subtyping relation defined above.

®, AF 7 <:dynamic

d, AF 7<:Object

®, A+ bottom <: 7

PAF T<iT

(S:0)eA DAL o<iT

O AF S<:7T

O AF o<k i€0,...,n A 1. <0,
(ko =-)V (k1 =+)

k k
DA 10, T 2T <00y, 0p — O

O,AF 1;<:0; 1€0,...,n

O AF C<1yy..., > <:C<oq,...,0,>

(C: class C<Ty,...,T,> extends C'<vg,...,vx> {...}) € D
DA [10,-. s Tn/T0y. -, TR]C'<vg, ..., 0> <: G<00,...,0m>

DPAF C<ro,y...,Tn><:G<0gy...,0m>

Field and Method lookup

Field lookup

(C : class C<Ty, ..., Ty> extends C'<uvy,...,v> {c¢}) € ®
var z: 7 € ¢t

O C<ry,..., > ~p [T, Tn/Tos .., Tl

(C : class C<Ty, ..., T,> extends C'<uvg,...,vp> {ct}) € ® z ¢ ¢t
O Cl'<ug,...,up>2 ~5 T

O+ C<ry,...,Tn>x ~5 (10, Tn/T0, ..., Tyl

Method lookup

(C :class C<Ty,...,T,> extends C'<vy, ..., vp> {3}) ed
funm: 7€ cé

OFC<1y, ..oy Tn>m ~ [T0y s T /0y Tl

(C : class C<Ty,...,T,> extends C'<vy, ..., vp> {ct}) € ® m ¢ cé
D C'<vg, ..., up>Mm ~y T

OFC<1, ...y Tn>m ~ [T0, ooy Tn/Tos -y TulT

Typing
Expression typing: ®, A,T'Fe : [7] f} 7

Expression typing is a relation between typing contexts, a term (e), an op-
tional type ([7]), and a type (7). The general idea is that we are typechecking
a term (e) and want to know if it is well-typed. The term appears in a context,
which may (or may not) impose a type constraint on the term. For example, in
var r : T = e, e appears in a context which requires it to be a subtype of T,
or to be coercable to 7. Alternatively if e appears as in var = : _ = e, then
the context does not provide a type constraint on e. This “contextual” type
information is both a constraint on the term, and may also provide a source of
information for type inference in e. The optional type [r] in the typing relation
corresponds to this contextual type information. Viewing the relation algorith-
mically, this should be viewed as an input to the algorithm, along with the term.
The process of checking a term allows us to synthesize a precise type for the
term e which may be more precise than the type required by the context. The
type 7 in the relation represents this more precise, synthesized type. This type
should be thought of as an output of the algorithm. It should always be the case
that the synthesized (output) type is a subtype of the checked (input) type if
the latter is present. The checking/synthesis pattern allows for the propagation
of type information both downwards and upwards.

It is often the case that downwards propagation is not useful. Consequently,
to simplify the presentation the rules which do not use the checking type require
that it be empty (_). This does not mean that such terms cannot be checked
when contextual type information is supplied: the first typing rule allows con-
textual type information to be dropped so that such rules apply in the case that
we have contextual type information, subject to the contextual type being a
supertype of the synthesized type:

dATFe: _fto O AF o<:T

P ATFe: T o

The implicit downcast rule also allows this when the contextual type is a
subtype of the synthesized type, corresponding to an implicit downcast.

O ATke: _fto O AF T<io

O ATFe:7T T

Variables are typed according to their declarations:

ATz : 7]kxz: - 7

Numbers, booleans, and null all have a fixed synthesized type.

O AT HFI: _f num

O, AT HI: _ f bool

P, A THtt: _ | bool

&, AT Fnull : _ ff bottom

A this expression is well-typed if we are inside of a method, and o is the
type of the enclosing class.

r=r,

O AT Hthis: _ o

A fully annotated function is well-typed if its body is well-typed at its de-
clared return type, under the assumption that the variables have their declared
types.

I'=T[Z : 7] ®AT'Fe:of o

OATH(z:F):0=e: _ 7 >0

A function with a missing argument type is well-typed if it is well-typed with
the argument type replaced with dynamic.

O, ATk (20 [10],...,2; s dynamic, ..., z, : [1,]) : [o] = e : [7] I+ 7¢

QAT (zo: [10],. @ity @y [T]) i o] = e [T] ft 7

A function with a missing argument type is well-typed if it is well-typed
with the argument type replaced with the corresponding argument type from
the context type. Note that this rule overlaps with the previous: the formal
presentation leaves this as a non-deterministic choice.

TCZU07...,Un£>UT
QAT F (xo: 0], @it Vs, @ i [T]) o] =€t 70 b T

QAT (zo:[r0],- st yeesp i [m]) i [o] = e 7 75

A function with a missing return type is well-typed if it is well-typed with
the return type replaced with dynamic.

O, ATk (x:[r]) : dynamic = e : [7.] f} 7¢

@,A,Fk(m):,ée DTl T

A function with a missing return type is well-typed if it is well-typed with
the return type replaced with the corresponding return type from the context
type. Note that this rule overlaps with the previous: the formal presentation
leaves this as a non-deterministic choice.

TC:’U(),.../UniUT
QAT (z:[7]):vr,=>e€: Tt 7

QATH(z:[T]):-=e:T I 7f

Instance creation creates an instance of the appropriate type.

(C :class C<Ty,...,T,> extends C'<vy,...,u> {...}) € D
len(7)=n+1

O, ATHFnewC<7>(): . C<7>

Members of the set of primitive operations (left unspecified) can only be
applied. Applications of primitives are well-typed if the arguments are well-
typed at the types given by the signature of the primitive.

op:?—nf A TFe: T 7

®,ATFop(e):_fo

Function applications are well-typed if the applicand is well-typed and has
function type, and the arguments are well-typed.

k
O, ATFe: _ {7057
O, AT e, : 7, 7, for CasTa € Co, T

a

®ATHe(el): -t

Application of an expression of type dynamic is well-typed if the arguments
are well-typed at any type.

O A TFe: _{ dynamic
B AT ke, : 7, fore, e,

O AT H e(ai) : _ ft dynamic

A dynamic call expression is well-typed so long as the applicand and the
arguments are well-typed at any type.

® AT Fe: dynamic |} 7
O,AT e, : -1 74 foreaeal>

O ATH dcall(e,a;) : _ ff dynamic

A method load is well-typed if the term is well-typed, and the method name
is present in the type of the term.

O ATFe: o SEom ~y, T

O ATkFem: _ {71

A method load from a term of type dynamic is well-typed if the term is
well-typed.

d AT+ e : dynamic |} 7

S, AT Fem: _f dynamic

A dynamic method load is well typed so long as the term is well-typed.

d, AT+ e : dynamic |} 7

O, A, T Fdload(e,m) : _ ff dynamic

A field load from this is well-typed if the field name is present in the type
of this.

'=r, ®Frzx ~;yo

S, A TFthisx : _ft o

An assignment expression is well-typed so long as the term is well-typed at
a type which is compatible with the type of the variable being assigned.

O ATFe:[1]fto ATz :0f o

D ATkFx=e:[1] o

A field assignment is well-typed if the term being assigned is well-typed, the
field name is present in the type of this, and the declared type of the field is
compatible with the type of the expression being assigned.

r=r, O ATFe:[1]fto
ol R AR o<:0

O AT Hthisxa=e: _1{ o

A throw expression is well-typed at any type.

& AT Fthrow : _ {} o

A cast expression is well-typed so long as the term being cast is well-typed.
The synthesized type is the cast-to type. We require that the cast-to type be a
ground type.

TODO(leafp): specify ground types

dDATFe: _fto T is ground

AT FeasT:_ 7

An instance check expression is well-typed if the term being checked is well-
typed. We require that the cast to-type be a ground type.

P ATFe: _fo T is ground

P, ATkHeisT: _ 1 bool

A check expression is well-typed so long as the term being checked is well-
typed. The synthesized type is the target type of the check.

P ATFe: o

O, AT+ check(e,7) : -t 7

Declaration typing: &, A ', vd ff I

Variable declaration typing checks the well-formedness of the components,
and produces an output context IV which contains the binding introduced by
the declaration.

A simple variable declaration with a declared type is well-typed if the initial-
izer for the declaration is well-typed at the declared type. The output context
binds the variable at the declared type.

A TFe: T 7

O ATHyvarx:7 = e ff Tz : 7]

A simple variable declaration without a declared type is well-typed if the
initializer for the declaration is well-typed at any type. The output context
binds the variable at the synthesized type (a simple form of type inference).

A TFe: -t 7

O ATHyvarx:_ = eff Tz : 7]

A function declaration is well-typed if the body of the function is well-typed
with the given return type, under the assumption that the function and its
parameters have their declared types. The function is assumed to have a con-
travariant (precise) function type. The output context binds the function vari-
able only.

Tr=Ta Ty I'"'=T[f : 4] I =T[7 : 77
AT Fs:7 11

QAT fzmg):mr=s TV

Statement typing: &, A, T'Fs : 7 4 I”

The statement typing relation checks the well-formedness of statements and
produces an output context which reflects any additional variable bindings in-
troduced into scope by the statements.

A variable declaration statement is well-typed if the variable declaration is
well-typed per the previous relation, with the corresponding output context.

&, ATkyvd { T

O,ATFHuvd: 7 T

An expression statement is well-typed if the expression is well-typed at any
type per the expression typing relation.

O ATkFe: -7

A TFe: 7T

A conditional statement is well-typed if the condition is well-typed as a
boolean, and the statements making up the two arms are well-typed. The
output context is unchanged.

O, A, T'Fe : bool o
AT Fsy 7 1Y O AT Fsy 7 Ty

O, AT Fif (e) then s; else sy : 7. T

A return statement is well-typed if the expression being returned is well-
typed at the given return type.

P ATFe: 7.t 7

O AT Freturne : 7. T

A sequence statement is well-typed if the first component is well-typed, and
the second component is well-typed with the output context of the first compo-
nent as its input context. The final output context is the output context of the
second component.

SATkFs; : 7 TV AT sy :m T

O,A T 5158 7 TV

Elaboration
These are the same rules, extended with a translated term which corresponds

to the original term with the additional dynamic type checks inserted to reify
the static unsoundness as runtime type errors.

Expression typing: &, A,I'Fe : [7] ft ¢ : 7

For subsumption, the elaboration of the underlying term carries through.

10

A TFe: _fte:o DAF o< T

O, ATFe: T e 0

In an implicit downcast, the elaboration adds a check so that an error will
be thrown if the types do not match at runtime.

P ATFe: _fteé:o AL T<io

O A TFe: 71 check(e,7) : 7

ATz : 7lkz: a7

O ATHG: _ i : num

O ATHT: _{t ff: bool

O, AT Htt: _ 1 tt : bool

O, A, TFnull : _ f null : bottom

r=r,

&, AT+ this : _ ff this : ¢
A fully annotated function elaborates to a function with an elaborated body.

The rest of the function elaboration rules fill in the reified type using contextual
information if present and applicable, or dynamic otherwise.

I'=T[Z : 7] ®ATl'Fe:ofe:o

PATH T A):o=e: (T H):o=¢€ 7 S0

11

O, ATF (20 : [70],...,2; : dynamic, ..., z,
QAT (zg:[ro)y..vitoy. o,z [m]) o] =€ [7] ftef: 7y
k
Te =0, ..., Un — Uy
QAT (o [10],. @itV & [T]) i o] =€t e ep @ Ty
Tt m]) ol =€ T eyt Ty

O ATE (zo: [0l @iy ..

O, ATF (x:[r]) :dynamic=e : [r] I} ey : 7

QAT (@:[r]):-=e: 1] M ef: Ty

k
Te = U0y e, Up — Uy

QATH(z:[7]):v,=e€e: T ftef: Ty
QATH(z:[T]):-=e:T tef: 1y
., T,> extends C'<vg,...,u> {...}) € ®

len(7)=n+1
M newC<7>() : O<7>

(C : class C<Ty,..

®,ATFnewC<7>() :

op: 7T o A TFe: T e 7

®,ATHop(e): _1 op(?) Do

Function application of an expression of function type elaborates to either a
call or a dynamic (checked) call, depending on the variance of the applicand. If
the applicand is a covariant (fuzzy) type, then a dynamic call is generated.

O ATke: _ fe:m 5
D ATFe, : 7, ft € : 7, for eq, T, € €0, Ta
¢(el) it k= —
o -
dcall(e’;el) ifk=+

@,A,F}—e(e_g) e T

Application of an expression of type dynamic elaborates to a dynamic call

12

&, ATFe: _{ € : dynamic
B AT ke, :_fe, 7 fore, e,

a

d,ATH e(e—;) : - ft dcall(¢/, €)) : dynamic

&, A TFe: dynamic ¢ : 7
O ATFe, : - e, 7, for e, € €,

®,A, T+ dcall(e,e)) : _ dcall(e/,Z) . dynamic

P ATFe: _fte:o dFom ~y, T

A TFem:_fem: 7

A method load from a term of type dynamic elaborates to a dynamic
(checked) load.

®, A T'tFe: dynamic f} ¢ : 7

O A TFem : _{ dload(¢/,m) : dynamic

&, AT+ e : dynamic f} ¢ : 7

O, AT+ dload(e,m) : _ { dload(e’,m) : dynamic

'=r, ®k7z ~¢o0o

& AT+ this.x : _ f) this.x : ¢

D ATFe:[1]fe 0 ATz :0fx: o

dDATFz=e:[1]fa=¢€:0

r=r, O ATFe:[1]fe 0
QT vy o DAF o< 0’

O A T'Hthisz=c¢: _f thisx=c: o

® A, T F throw : _ {} throw : ¢

13

TODO(leafp): specify ground types

O ATkFe: _f1e:0o T is ground

O ATkreasT: _feast:7

A TkFe: _fte:o T is ground

AT FHeisT

:_ € is 7 : bool

P ATkFe: _fte:o

® A, T+ check(e,7) : _ f} check(e/,7) : 7

Declaration typing: ®, A, ', vd f vd : TV

Elaboration of declarations elaborates the underlying expressions

S ATFe: T e 7

O AT Fgyvarz:7 = eff varz: 7'

A TkFe: _fe:71

LT

AT Fgvarz:_ =

eftvarz:7 = ¢ : Tz : 7]

Tr=Ta =Ty I'=T[f : 4] I =T'[7 : 77
AT Fs:T7 f1s : Ty

QAT fxmy):mr=s{ f(x:74):7 =58 : "

Statement typing: ®, A, T'Fs : 7 (s : IV

Statement elaboration elaborates the underlying expressions.

AT vd ff vd : T

A TFwvd : 7 fod : TV

14

S ATkFe: _fe: 7T

A TFe:7 e :T

O, ATHe:bool fte:o
O ATHEs i1 i8] : Ty O ATHEsy : 7 fsh: Ty

O, AT Fif (e) then s; else s3 : 7. {+if (¢’) then s else s :

AT kFe:7. 1€ 7

&, A Tkreturne : 7. freturne’ : I

AT Fs 7 8] 0 TV O AT Fsg:m sy TV

O ATHF 1580 : 7 858, : T

15

